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Abstract
Efficient detection of performance limits is critical to autonomous driving. As autonomous driving is difficult to be realized 
under complicated scenarios, an improved genetic algorithm-based evolution test is proposed to accelerate the evaluation 
of performance limits. It conducts crossover operation at all positions and mutation several times to make the high-quality 
chromosome exist in candidate offspring easily. Then the normal offspring is selected statistically based on the scenario com-
plexity, which is designed to measure the difficulty of realizing autonomous driving through the Analytic Hierarchy Process. 
The benefits of modified cross/mutation operators on the improvement of scenario complexity are analyzed theoretically. 
Finally, the effectiveness of improved genetic algorithm-based evolution test is validated after being applied to evaluate the 
collision avoidance performance of an automatic parallel parking system.

Keywords Autonomous driving · Test and evaluation · Evolution test · Genetic algorithm

Abbreviations
AEB  Automatic emergency baking
AHP  Analytic hierarchy process
APPS  Automatic parallel parking system
APS  Automated parking system
GA  Genetic algorithm
IGA  Improved genetic algorithm
ISO  International standard organization

1 Introduction

To improve traffic safety and efficiency, original equip-
ment manufacturers (OEMs) and governments around the 
world devote themselves to promoting automated driv-
ing systems, such as automatic parking system (APS) and 
automatic emergency braking (AEB) system [1, 2]. These 

systems have a stringent requirement on safety and perfor-
mance, which also benefits their market competitiveness [3]. 
Therefore, sufficient evaluations are necessary before put-
ting them into the market [4, 5]. One direct way is using the 
standards delivered by organizations, such as international 
standard organization (ISO) and government agencies [6, 
7]. For example, Christian et al. [8] analyzed their devel-
oped AEB under different lateral offsets using the scenario 
in Euro-NCAP. Since about 2002, ISO has published the 
specifications for systems from intelligent level 0 to 2 one 
after another. In 2020, level 2.5 system was first included in 
the evaluation program executed by iVISTA in China [6]. 
Such standard test scenarios are limited because only typical 
conditions are considered. They are far from ensuring cover-
age, let alone evaluation of performance limits.

Different from traditional onboard systems, such as bat-
tery management system [9], functionality and performance 
of automated driving systems are greatly influenced by traf-
fic environments. The uncontrollability, variety, and indefin-
ability of traffic pose great challenges on evaluation, espe-
cially the performance limit. Moreover, automated driving 
is directly related to safety, so it is critical to find out the 
boundary of achievable performance to avoid misuse. To 
achieve this, OEMs have to take a large amount of natural-
istic field operational tests. In this way, vehicles equipped 
with automated driving systems are driven in real traffic for 
a very long time. The automated driving system is executed 
under real conditions with random effects. Theoretically, a 
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complete evaluation can be achieved with adequate exciting 
samples [2]. Several such projects have been deployed in the 
US [10, 11] and Europe [12, 13]. Unfortunately, the prob-
ability of critical condition is very low in real traffic, which 
leads to an inconceivable test cycle and huge costs [10]. 
Moreover, how to ensure experimental safety in dangerous 
conditions is still a problem.

Compared with the naturalistic field operational test, 
the execution can be accelerated by simulation. There are 
no actual injuries or losses when experiencing dangerous 
scenarios during simulation [14]. One key problem is the 
design of the test set, which can be extracted from natural 
driving or crash databases [15]. But the completeness of the 
dataset conversely restricts the testing effect [16]. Another 
way is using some systematic methods, e.g., combinational 
test. This method can ensure the required coverage and may 
generate scenarios that do not exist in reality [17, 18].

To accelerate the simulation test, Zhao et  al. [19] 
designed an aggressive driver model to increase the colli-
sion possibility, when evaluating the reliability of car fol-
lowing systems. The efficiency is increased by more than 
300 times compared with the nominal one. However, the 
driving behavior is influenced by many factors and has 
high-order nonlinearity [20]. It is difficult to construct an 
accurate mechanism model, especially under complex con-
ditions. Duan et al. [21] optimized the test set by raising 
the proportion of complicated scenarios to increase the fault 
detection rate. This method was applied to test a traffic jam 
pilot system by an automated simulation test and evaluation 
system in Ref. [22].

The aforementioned strategies are open-loop essen-
tially since the test condition is designed irrelevantly to the 
response. For different systems, the conditions activating its 
performance limit vary greatly. The evolution test using the 
genetic algorithm (GA) has been applied to evaluate the per-
formance of automated driving systems, e.g., adaptive cruise 
control system [23] and APS [24]. The application results 
show that extreme working conditions can be found with a 
shorter cycle compared with the random test [23]. But the 
evolution process is still random because the effectiveness 
of the generated offspring cannot be evaluated beforehand.

Considering the self-organization, adaption, and learning 
of GA, the Improved Genetic Algorithm (IGA) is proposed 
to further accelerate the evaluation process by modifying 
the crossover and mutation operators. This is because that 
a complicated test scenario has a higher possibility to find 
out the performance limit. Based on the scenario complexity 
designed through the analytic hierarchy process (AHP), the 
effectiveness of candidate scenarios can be measured with-
out conducting tests. Both crossover and mutation operators 
of GA are modified by introducing the scenario complex-
ity to generate more effective scenarios. Meanwhile, the 
advantage of natural evolution is retained. The effectiveness 

of IGA-based evolution test is analyzed theoretically and 
validated by the application to evaluate the collision per-
formance of an automatic parallel parking system (APPS).

The rest of this paper is organized as follows: Sect. 2 
introduces the IGA based evaluation strategy. Its perfor-
mance is analyzed theoretically in Sect. 3. Section 4 vali-
dates the effectiveness by the evaluation of an APPS as an 
example and Sect. 5 concludes the paper.

2  IGA‑Based Evaluation Strategy

The traditional GA performs crossover/mutation on posi-
tions randomly selected with an average distribution. 
This restricts the possibility of generating better offspring 
because they cannot be judged without conducting tests [25]. 
As autonomous driving is more difficult to be realized under 
more complex conditions, an IGA-based evaluation strategy 
is proposed as shown in Fig. 1.

The crossover/mutation operators are improved by intro-
ducing the scenario complexity to guide the selection of 
offspring as follows:

(1) Full crossover: The chromosome of parent is crossed at 
all positions to avoid missing the good offspring. Then 
each pair of offspring is evaluated by the scenario com-
plexity. The effective offspring is selected to maximize 
the possibility of bigger complexity.

(2) Multiple mutation: To make the better population 
appear easily, multiple mutations are conducted. The 
test scenario of next generation is selected from the 
candidate populations according to their overall com-
plexity.

2.1  Calculation of Scenario Complexity

From the aforementioned fundamentals of IGA, one of its 
key components is scenario complexity. It evaluates the 
effectiveness of the test scenario indirectly and also guides 
the evolution procedure besides the fitness function. Since 
the tested system is always a black box, it is hard to estab-
lish an analytical description. AHP is adopted to analyze 
and calculate the scenario complexity as shown in Fig. 2. It 
generates a more accurate evaluation by comprehensively 
combining the experience of engineers, technical specifica-
tions, and working principles [26, 27].

In Fig. 2, Li,j denotes the j-th influence factor in the i-
th layer whose normalized importance degree is Si,j , and qj 
denotes the discretized value of the bottom factor [28]. They 
quantitatively characterize the influence of each factor on the 
system. For continuous or unbounded factors, approaches 
such as equivalence partitioning and boundary value analysis 
can be adopted to discretize these factors into multiple but 
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limited values [29]. The importance degree of each value 
relative to the root is calculated by [18]

where In is the relative importance degree of qn and Ω is the 
set composed of all subscripts from qn to the root (shown by 
the red line in Fig. 2 as an example).

A test case, T =
{
vi, i = 1,⋯ ,NF

}
 , is generated by ran-

domly selecting the value vi in the possible range of each 

(1)In =
∏

(i,j)∈Ω

Si,j

bottom factor. The generated value may be out of the set 
composed of discrete values. By linear interpolation, the 
scenario complexity is calculated according to the impor-
tance degree with the assumption that vi ∈

[
qj, qj+1

]
:

where D(T) denotes the scenario complexity of T.
To better illustrate the calculation process of scenario 

complexity by AHP, a specific application instance is shown 
below. For example, as shown in Fig. 2, the influence factors 
at the bottom layer are “Speed”, “Weather”, etc. The fac-
tor “Speed” is discretized into “10 km/h”, “15 km/h”, etc. 
Experts can be invited to evaluate the relative importance 
of each factor by comparing it with other factors in the same 
layer. The evaluation score ranges from 0 to 9 (0 is the least 
important one and 9 is the most important). Then the nor-
malized relative importance Si,j can be obtained by AHP [26, 
27]. With the normalized relative importance of each factor, 
the importance degree of each value relative to the root can 
be calculated by Eq. (1). When conducting the evolution test, 
a test scenario is generated by combining all factors at the 
bottom layer and selecting one value in its range randomly, 
e.g., Ti = {11 km/h, Sunny,…} . The scenario complexity 

(2)D(T) =

NF∑

i=1

[
Ij +

vi − qj

qj+1 − qj

(
Ij+1 − Ij

)]

Fig. 1  IGA-based evaluation 
strategy for automated driving 
system

Fig. 2  Hierarchy model for analyzing scenario complexity
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of Ti can be obtained from Eq. (2) by linear interpolation 
according to SQ+1,1 , SQ+1,2 , etc.

2.2  Design of IGA‑Based Evaluation Process

The overall procedure of IGA is similar to the GA-based 
evolution test, which includes 6 steps as shown in Fig. 3 
[23, 24].

With the definitions in Appendix 1.1, the evolution test 
process is described as the following.

Step 1: Random generation of initial population 
XG,G = 1.

Step 2: Test using XG . According to the test results, the 
pseudo-code for the determination of whether the interactive 
test process is stopped is as follows:

1 = arg min
1 ≤ ≤

2 If ≤ th

3 Output (  and )
4         Test is stopped because performance limit is detected.
5 Else if ≥ th

6 If ∗ <

7 Output ( ∗ and ∗)
8         Else
9         Output (  and )

10         End

11 Test is stopped because of the limita�on of interac�ve 
number.

12 Else
13         Go to Step 3
14 End

Step 3: Rearrangement of the individuals Ti in XG from 
the smallest to the largest according to gi . To ensure the 
global convergence, the following elitist selection strategy 
is adopted [30]:

1 If = 1

2 ∗ = 1; ∗ = 1

3 Else if ∗ > 1

4 ∗ = 1; ∗ = 1

5 End

Step 4: Natural selection based on XG using the linear 
ranking method to restrain the premature convergence. 
The 2m scenarios for crossover operation are selected with 
the probability, 

�−
2(�−1)(i−1)

2m−1

2m
 , for each individual Ti , where 

� ∈ [1, 2) is the selection pressure [31]. The bigger � means 
it is more likely to choose the individuals with a smaller 
ranking number.

Step 5. Full crossover (as shown by the “Full crossover” 
block in Fig. 1), whose pseudo-code is:

1 For = 1 

2 For = 1 

3 C = Cross C, C ∈ S  
4 End

5
Random selec�on of C∗ with the probability:

r
C∗ = C = e × C

/

=1

e × C

6 Store C∗ in C

7 End

where Cross
(
P
C
i
, j
)
 denotes the single-point crossover 

operation on PC
i
 at the j-th position [25] and d ≥ 0 is the 

influence intensity of scenario complexity on random selec-
tion. A larger d means a greater probability of choosing the 
offspring pair with higher complexity.

Step 6. Multiple mutation (as shown by the “multiple 
mutation” block in Fig. 1). Its pseudo-code is.

1 For = 1 

2 M = Mute ( C, M)
3 End

4
Random selec�on of M∗ with the probability:

r
M∗ = M = e × M

/

=1

e × M

5 = + 1

6 = M∗

Fig. 3  Evolution test process
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where Mute
(
X
C
, pM

)
 denotes the canonical mutation 

operation on XC with the probability pM [30].

3  Performance Analysis

It has been proved that GA with the elitist selection strategy 
can achieve global convergence, if the state transition matrix 
of selection is column-allowable, the state transition matrix 
of crossover is stochastic, and the state transition matrix of 
mutation is positive [30]. Compared with GA whose off-
spring is only determined by the gene of their parents, the 
generation of IGA’s offspring is influenced by both parental 
gene and scenario complexity. The requirement of global 
convergence and statistical characteristics of offspring are 
analyzed theoretically in this section. The definitions of 
symbols and the details about the proof can be found in 
Appendix 1.

3.1  Statistical Analysis of Full Crossover Operator

According to Step 5 of IGA, the probability of selecting PC
i,j

 
as the offspring is

The same offspring may be generated by the crossover at 
different positions. If the number of positions where PC∗

i
 can 

be generated is ni , the total probability is

where C(∙) denotes the full crossover operator, i.e., Step 
5 of IGA. From Eq. (4), it is found that the proposed full 
crossover operator only changes the probability distribu-
tion of individual offspring, and the stochastic requirement 
of the state transition matrix for global convergence is still 
satisfied.

The proposed operator is compared with the traditional 
one to further analyze what kind of offspring will be gener-
ated by the full crossover operator. When using an equal 
probability to select the crossover position, i.e. 
Pr

(
P
C∗
i

= P
C
i,j

)
=

1

L
 , the selection probability of offspring 

for the single-point crossover is [25, 31]:

where Ĉ(∙) denotes the traditional single-point crossover 
operator and pC ∈ [0, 1] is the crossover probability. From 

(3)Pr

(
P
C∗
i

= P
C
i,j

)
= e

d×D
(
P
C
i,j

)

∕

L∑

k=1

e
d×D

(
P
C
i,k

)

(4)Pr

(
C
(
P
C
i

)
= P

C∗
i

)
= nie

d×D
(
P
C
i,j

)

∕

L∑

k=1

e
d×D

(
P
C
i,k

)

(5)Pr

(
Ĉ
(
P
C
i

)
= P

C∗
i

)
=

{
pCni

L
,P

C∗
i

≠ P
C
i

1 − pC +
pCni

L
,P

C∗
i

= P
C
i

Eqs. (4) and (5), there exist the following two conditions 
according to whether the offspring is the same as its parent:

(i) The offspring is different from its parent, i.e., PC∗
i

≠ P
C
i

.
The inequality, Pr

(
C
(
P
C
i

)
= P

C∗
i

)
> Pr

(
�C
(
P
C
i

)
= P

C∗
i

)
 , 

establishes if ed×D
�
PC
i,j

�

>
pC

L

L∑
k=1

e
d×D

�
PC
i,k

�

 . This means that 

compared with the traditional one, the full crossover opera-
tor has a greater possibility to select the offspring with 
higher complexity.

(ii) The offspring is the same as its parent, i.e., PC∗
i

= P
C

i
.

If ed×D
�
PC
i,j

�

>

��
1 − pC

�
∕ni + pC∕L

� L∑
k=1

e
d×D

�
PC
i,k

�

 , then 

P
r

(
C
(
P
C

i

)
= P

C∗
i

)
> P

r

(
Ĉ
(
P
C

i

)
= P

C∗
i

)
 . Since PC∗

i
= P

C

i
 , 

this implies that when the complexity of parent is large 
enough, the possibility of selecting it as the offspring is 
higher than the traditional one.

Summarizing the aforementioned discussion, the off-
spring generated by the full crossover tends to inherit the 
chromosomes with higher complexity. Furthermore, to ana-
lyze the characteristic of offspring quantitatively, the expect 
of offspring’s complexity is studied and summarized by the 
following Theorem.

Theorem 1 Compared with the single-point crossover 
with the probability pC in Ref. [25], the complexity expect 
of offspring generated by the full crossover satisfies:

(C1) When pC = 1 , E
(
D
(
C
(
P
C
i

)))
≥ E

(
D
(
Ĉ
(
P
C
i

)))
 , 

where E(∙) denotes the expectation of a random signal;
(C2) When 0 ≤ pC < 1 , the following inequality 

establishes:

if the average complexity of crossover offspring is not 
smaller than their parent:

Proof: The proof is in Appendix

Conclusion C2 of Theorem 1 shows that the complexity 
of offspring generated by the full crossover may be smaller 
than the traditional one. But this phenomenon hardly appears 
in practice, because it is found from Eq. (17) in Appendix 
that this requires the crossover possibility pC to be small 
enough. This is bad for convergence and easily leads to 
being premature [32].

Another point that should be noted is that ΩC
+
 is required 

to be nonempty to ensure the inequality in Eq.  (12) in 
Appendix. It is known from Eq. (13) in Appendix that there 

(6)E
(
D
(
C
(
P
C
i

)))
≥ E

(
D
(
Ĉ
(
P
C
i

)))

(7)
1

L

L∑

j=1

D
(
P
C
i,j

)
≥ D

(
P
C
i

)
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exists at  least one element in ΩC
+

 ,  otherwise ∑L

j=1
DC

i,j
< pC ≤ 1 , which is contradictory to 

∑L

j=1
DC

i,j
= 1.

3.2  Complexity Expect of Mutation Offspring

According to Step 6 of IGA, the multiple mutation operation 
can be divided into two steps: (1) The canonical mutation 
operation repeated for N times [30]; (2) Selection of the off-
spring from N candidate populations according to the overall 
complexity. To facilitate the comparative analysis to show 
the improvement of offspring’s complexity, the following 
lemma is presented to convert the canonical mutation to the 
similar procedure as the multiple mutation.

Lemma 1: Let M̃(∙) denote the operator, which firstly con-
ducts N(N ≥ 1) times canonical mutation and then selects 
one with the equal probability. Then we have

where M̂(∙) denotes the canonical mutation operator.

Proof: The proof is in Appendix.

According to Lemma 1, the first step of converted canoni-
cal mutation and the proposed multiple mutation is the same. 
The improvement of offspring’s complexity is analyzed only 
considering the second step and summarized by the follow-
ing theorem.

Theorem 2: Compared with the canonical mutation opera-
tion [30], the offspring complexity expect of the multiple 
mutation satisfies:

Proof: The proof is in Appendix.

Theorem 2 Ensures that the offspring generated by the mul-
tiple mutation operator has a higher overall complexity. This 
is one of the main objectives of IGA. Besides, the proposed 
multiple mutation operator only changes the distribution of 
its offspring population, so the positivity of state transition 
matrix is not changed.

4  Application Validation and Analysis

This study focuses on the improvement of GA by modify-
ing the crossover and mutation operators. Since the vehicle 
could easily fail to park, the collision avoidance performance 
of APPS is selected to validate the effectiveness of IGA. The 
test platform integrated with PreScan and Matlab is shown 
in Fig. 4 [22]. The generated scenarios are automatically 

(8)Pr

(
M̃
(
X
C
)
= X

M∗
)
= Pr

(
�M
(
X
C
)
= X

M∗
)

(9)E
(
D
(
M
(
X
C
)))

≥ E
(
D
(
M̂
(
X
C
)))

constructed by using the API of Prescan. Both the ultrasonic 
sensors and environments are simulated by Prescan. The 
tested algorithm and vehicle model are simulated in Matlab/
Simulink. The objects and parking space are detected by 12 
ultrasonic sensors, the desired parking trajectory composed 
of arcs is generated using the geometric method, and a pre-
view controller with multiple points is designed to control 
the steering angle to track the desired trajectory [33].

Considering the following reasons, the simulation sce-
nario is designed as shown in Fig. 5 [33]:

(1) The objects, such as vehicles, can be detected by ultra-
sonic sensors. If the detected clearance is smaller than 
the threshold, host vehicle (HV) will be stopped by 
braking. With this logic, HV will not collide with the 
surrounding vehicles;

(2) If there exist objects on both sides of the parking space, 
the parking process is easily stopped by other factors, 
such as “no available parking space” and “number of 
moves exceeds the limit”. Boundary vehicle (BV) is 
arranged on one side of the parking space.

The considered influence factors are illustrated by Fig. 5, 
where F1 is the distance from BV to curb, F2 is the heading 
of BV, F3 is the distance between BV and HV, F4 is the head-
ing of HV and F5 is the speed of HV. The importance degree 
of each factor was obtained by AHP introduced in Sect. 2.1. 
Some of them are shown in Table 1 as an example.

4.1  Comparative analysis

The objective function is the minimum distance from HV 
to curb after parking, and once collision happens the park-
ing process is finished. How to calculate the objective func-
tion is illustrated in Fig. 6, where G, A, B, C, and D denote 

Fig. 4  Test system structure
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the center of gravity and the four vertices of HV’s outline, 
respectively. The objective function is defined as

where J  is the objective function, yi can be calculated 
according to the coordinate of G, the body parameters, and 
the heading angle of HV.

With the parameters defined in Table 2, the comparative 
results are shown in Fig. 7.

From Fig. 7a, the population complexity of IGA with gen-
eration increases much more quickly than that of GA. This 
implies that the proposed full crossover and multiple muta-
tion operators can inherit the good chromosome of parent to 
generate the offspring with higher complexity. Accordingly, 
IGA has a better performance to find the performance limit 
of the collision avoidance as shown by Fig. 7b. Besides, 

(10)J = min
i=1,2,3,4

yi

the convergence speed of IGA is about twice that of GA, 
and the found minimum distance of IGA is zero. This is 
much smaller than 0.1 m found by GA. Furthermore, the 
convergence of object functions of IGA is much better than 
that of GA. After 15 generations, premature convergence 
is observed in GA. It is also beneficial to improve the con-
vergence stability by introducing the scenario complexity.

This study aims to solve the problem that autonomous 
driving is more difficult to be realized under more complex 
conditions. Accordingly, the index for the evaluation of sce-
nario complex is critical to IGA. The statistical results of 
scenario complexity calculated by Eq. (2) and the values of 
the objective function are shown in Fig. 8. It shows that the 
proposed measurement index of scenario complexity has a 
statistically obvious correlation with the test objective.

From the theory of GA, it is important to keep a proper 
mutation probability. It is controlled around 0.01 in general 
[32]. If the mutation probability is too low, it would be hard 
to generate better offspring, while a big mutation probability 
causes the evolution direction to be chaotic. In the proposed 
multiple mutation operator, the mutation probability is influ-
enced by the scenario complexity. It may deviate from its 
allowable range. To address this problem, the actual muta-
tion ratio is shown in Fig. 9. It is found that the mutation 
probability of the multiple mutation operator stays around 
the predefined probability, and it is similar to that of the 
canonical mutation operator.

Fig. 5  The diagram of test scenario

Table 1  Hierarchal model of influence factors

Layer 1 S
1,j

Layer 2 S
2,j

Discrete value I
n

Distance 0.47 F
1

0.50 0.350 m 0.161
0.850 m 0.031
⋯ ⋯

1.850 m 0.019
F
3

0.50 0.400 m 0.120
0.675 m 0.061
⋯ ⋯

1.500 m 0.008
Heading 0.47 F

2
0.25 −4.000 deg 0.008

−3.000 deg 0.007
⋯ ⋯

4.000 deg 0.040
F
4

0.75 −2.000 deg 0.012
−1.000 deg 0.022
⋯ ⋯

2.000 deg 0.180
Speed 0.07 F

5
1.00 10.000 km/h 0.003

12.000 km/h 0.010
⋯ ⋯

18.000 km/h 0.021

Fig. 6  Diagram of objection function

Table 2  Parameters of evolution tests

Symbol Description Value

� Selection pressure 1.9
m Number of individuals 5
L Length of gene 100
p
M

Mutation probability 0.009
p
C

Crossover probability 1
G

th
Maximum number of test interactions 25

g
th

Threshold of objective function value 0
N Number of populations 50
d Influence intensity of scenario complexity 600
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4.2  Influence of Algorithm Parameters

Compared with GA, the performance of IGA is influenced 
by other parameters, i.e., N and d . The former determines 
the number of generated populations of the canonical muta-
tion operation (see line 1 ~ 3 of Step 6) and the latter reflects 
the influence intensity of scenario complexity on random 
selection (see line 5 of Step 5 and line 4 of Step 6). This 
section numerically analyzes the influence of parameters on 
the performance of test effect and convergence.

Firstly, five groups of tests with N = 10, 20, 30, 40, 50 
are conducted with each repeated by six times. The average 

results of test effect and convergence are shown in Fig. 10. 
When N is small, it is more difficult to include the high-
quality population in offspring population, which is bad for 
the test performances. When N ≥ 30 , the test performance 
tends to be stable, because with the increase of samples the 
average effect becomes prominent.

Another parameter is analyzed by conducting the tests 
with d = 100, 200, 400, 600, 800 . Each type of test is 
repeated by six times to avoid randomness and average 
results are shown in Fig. 11. The parameter, d, is positively 
related to the intervention intensity of complexity. When 
d < 400 , the increase of d benefits the test performance. 
After d reaches 400, the test performance almost keeps 
unchanged. This is caused by the influence saturation of the 
complexity intervention.

5  Conclusion

To overcome the challenges of evaluation of performance 
limit for automated driving systems, an IGA based evolu-
tion test strategy is proposed by designing a measurement 
index of scenario complexity and modifying the original 
cross/mutation operators to increase test efficiency and 

Fig. 7  Comparative evolution test results

Fig. 8  Relationship between scenario complexity and test effect

Fig. 9  Comparative results of mutation probability

Fig. 10  Influence of mutation times on test performances
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effectiveness. The theoretical analysis and application results 
on APPS show that:

(1) The proposed complexity index for the test scenario can 
measure the difficulty of realizing autonomous driving 
statistically;

(2) The designed full-cross and multiple-mutation opera-
tors effectively increase the scenario complexity of 
offspring;

(3) Compared with GA-based evolution test, IGA-based 
strategy shows better performance of convergence and 
test effect.

There remain some issues that are needed to be further 
studied in the future:

(1) The simulated scenario for the performance limit evalu-
ation of APPS is static. The proposed strategy can be 
further applied to more complicated intelligent driving 
systems under dynamic scenarios.

(2) The performance limit may be activated by several dif-
ferent scenarios. The proposed evolution test process 
is terminated when some possibility is found. How to 
ensure that all possible scenarios are found needs to be 
further studied.

Fig. 11  Influence intensity of scenario complexity
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Appendix 1 Definitions and Proofs

Definition of Symbols

gi : The objective function value corresponding to Ti;
gth : The threshold of the objective function value;
G: The generation of population;
Gth : The maximum number of interaction test process;
P
C
i
 : The i-th parent individual pair in the natural selected 

population XS from XG;
P
C
i,j

 : The offspring pair generated by single-point crosso-
ver at the j-th position of PC

i
;

P
C∗
i

 : The selected offspring pair from PC
i,j
, j = 1,⋯ ,L , 

where L is the number of genes;
T
∗ : The best test case evaluated by gi , and its objective 

function value is g∗;
XG =

{
Ti, i = 1,⋯ , 2m

}
 : The G-th population compose 

of 2 m individuals;
X
C =

{
P
C∗
1
,⋯ ,P

C∗
m

}
 : The offspring population generated 

by crossover operation;
X
M
i

 : The population generated by conducting the i-th 
mutation on XC;

X
M∗ : The selected population from XM

i
, i = 1,⋯ ,N  , 

where N is the mutation times.
D(�) =

1

n

n∑
i=1

D
�
Ti

�
 : The average complexity of a popula-

tion � =
{
T1,T2,… ,Tn

}
;

Pr (∙) : The occurrence probability of an event.

Proof of Theorem 1

From Eqs. (4) and (5):

where DC
i,j
= e

d×D
�
PC
i,j

�

∕
L∑

k=1

e
d×D

�
PC
i,j

�

 is the normalized com-

plexity of PC
i,j

 . According to whether the full crossover can 
increase the complexity of offspring, Eq. (11) can be re-
written as

where ΩC
+
=
{
j|DC

i,j
≥

pC

L

}
 and ΩC

−
= {j|j = 1,⋯ , L} − ΩC

+
.

From Eq. (5) and the definition of DC
i,j

:

when pC = 1 , the following equation establishes from 
Eq. (13):

Then substituting Eq. 14 and pC = 1 to Eq. (12) yields

According to the definition of ΩC
+
 and ΩC

−
:

(11)

E

(
D
(
C
(
P
C
i

)))
− E

(
D

(
Ĉ
(
P
C
i

)))

=

L∑

j=1

(
D

C
i,j
−

pC

L

)
D

(
P
C
i,j

)
− (1 − pC)D(P

C

i
),

(12)

E

(
D
(
C
(
P
C
i

)))
− E

(
D

(
Ĉ
(
P
C
i

)))

=
∑

j∈ΩC
+

(
D

C
i,j
−

pC

L

)
D

(
P
C
i,j

)
+

∑

j∈ΩC
−

(
D

C
i,j
−

pC

L

)
D

(
P
C
i,j

)

− (1 − pC)D(P
C

i
) ≥ min

j∈ΩC
+

(
D

(
P
C
i,j

)) ∑

j∈ΩC

+

(
D

C
i,j
−

pC

L

)

+ max
j∈ΩC

−

(
D

(
P
C
i,j

)) ∑

j∈ΩC

−

(
D

C
i,j
−

pC

L

)
− (1 − pC)D(P

C

i
)

(13)

L∑

j=1

pC

L
+ 1 − pC = 1and

L∑

j=1

D
C
i,j
= 1 ⇒

∑

j∈ΩC
+

(
D

C
i,j
−

pC

L

)

+
∑

j∈ΩC
−

(
D

C
i,j
−

pC

L

)
−
(
1 − pC

)
= 0.

(14)
∑

j∈ΩC
−

(
DC

i,j
−

1

L

)
= −

∑

j∈ΩC
+

(
DC

i,j
−

1

L

)

(15)E
(
D
(
C
(
P
C
i

)))
− E

(
D
(
Ĉ
(
P
C
i

)))
≥

[
min
j∈ΩC

+

(
D
(
P
C
i,j

))
− max

j∈ΩC
−

(
D
(
P
C
i,j

))] ∑

j∈ΩC
+

(
DC

i,j
−

1

L

)

(16)DC
i,j
−

1

L
≥ 0,∀j ∈ ΩC

+
andmax

j∈ΩC
−

(
D
(
P
C
i,j

))
1

d
ln

(
pC

L

L∑

k=1

e
d×D

(
P
C
i,k

))
≤ min

j∈ΩC
+

(
D
(
P
C
i,j

))
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Conclusion C1 is proved by substituting Eq.  (16) to 
Eq. (15).

When 0 ≤ pC < 1 , the following equation is deduced by 
substituting Eq. (13) to Eq. (11):

Equation (17) is monotonically decreasing with pC as the 
variable when Eq. (7) establishes, and so C2 establishes with 
the conclusion derived from C1.

Proof of Lemma 1

Since the N times canonical mutations are independent, the 
following equations are obtained:

where Ci
N
=

N!

i!(N−i)!
 denotes the combination number.

According to the binomial expansion

Lemma 1: Is proved by substituting Eq. (19) to Eq. (18).

Proof of Theorem 2

According to Step 6 and Lemma 1:

(17)E
(
D
(
C
(
P
C
i

)))
− E

(
D
(
Ĉ
(
P
C
i

)))
=

L∑

j=1

DC
i,j

(
D
(
P
C
i,j

)
− D(P

C

i
)
)
−

pC

L

L∑

j=1

(
D
(
P
C
i,j

)
− D(P

C

i
)
)

(18)
Pr

(
M̃
(
X
C
)
= X

M∗
)
=

N∑

i=0

[
iCi

N

N
Pi
r

(
�M
(
X
C
)
= X

M∗
)
×
(
1 − Pr

(
�M
(
X
C
)
= X

M∗
))N−i

]

= Pr

(
�M
(
X
C
)
= X

M∗
)
×

N−1∑

i=1

[
Ci−1
N−1

Pi−1
r

(
�M
(
X
C
)
= X

M∗
)
×
(
1 − Pr

(
�M
(
X
C
)
= X

M∗
))N−i

]

(19)
N−1∑

i=1

[
Ci−1

N−1
Pi−1
r

(
M̂
(
X

C
)
= X

M∗
)
×
(
1 − Pr

(
M̂
(
X

C
)
= X

M∗
))N−i

]
=
[
Pr

(
M̂
(
X

C
)
= X

M∗
)
+ 1 −Pr

(
M̂
(
X

C
)
= X

M∗
)]N−1

= 1

Being similar to the analysis procedure of Eq.  (12), 
Eq. (20) is re-written as

where ΩM
+
=
{
i|DM

i
≥

1

N

}
 , ΩM

−
= {i|i = 1,⋯ ,N} − ΩM

+
 and 

DM
i
= ed×D(X

M
i )∕

N∑
k=1

ed×D(X
M
k ) is the normalized complexity. 

Equation (9) is derived referring to the analysis process from 
(15) to (16) with the fact that 

∑N

i=1
DM

i
= 1.

(20)

E
(
D
(
M
(
X
C
)))

− E
(
D
(
M̂
(
X
C
)))

=

N∑

i=1

(
DM

i
−

1

N

)
× D

(
X
M
i

)

(21)

E

(
D
(
M
(
X
C
)))

− E

(
D

(
M̂
(
X
C
)))

≥ min
i∈ΩM

+

(
D
(
X
M
i

))

×
∑

i∈ΩM
+

(
D

M
i
−

1

N

)
+ max

i∈ΩM
−

(
D
(
X
M
i

))
×

∑

i∈ΩM
−

(
D

M
i
−

1

N

)
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